If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x=362
We move all terms to the left:
x^2+10x-(362)=0
a = 1; b = 10; c = -362;
Δ = b2-4ac
Δ = 102-4·1·(-362)
Δ = 1548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1548}=\sqrt{36*43}=\sqrt{36}*\sqrt{43}=6\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6\sqrt{43}}{2*1}=\frac{-10-6\sqrt{43}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6\sqrt{43}}{2*1}=\frac{-10+6\sqrt{43}}{2} $
| 2y-3y=5+y | | 4x+49=28x+28 | | 3x×2x=108 | | -6+n=37 | | 8(3s+10)=334 | | f(0)=7-5(0) | | 2+n=32 | | 8=1-1x | | 87x=135 | | 8(u-4)=72 | | n-(-9)=55 | | 4(2n-3)=(6n+4)+3 | | x^2/(0.05-x)=1.5×10^-13 | | g−73=72 | | 2(q-7)=6 | | 2(e+1)=6 | | 125^(7x-2)=3 | | 12x+4=7x+2 | | n-2=40 | | 7-4d=4-d | | 3p+1/2=0 | | 4x–8+2x+2=180 | | -(x+3)-5=4x-6 | | 2/5(x-23.50)=13.80 | | (z+7)^2=3 | | 9-0=y | | 2x+94=126 | | 9-1=y | | 2x+6=7x-15 | | |2m-8|=8 | | 125=5x÷15 | | 3x-45=2 |